domingo, 28 de octubre de 2007

Divisibility rules

Do you remenber divisibility rules? Review it here
Is 2064 divisible by 6?
Is 5 a factor of 75?
Is 17 a prime or composed number?
Write all factors of number 24.

Exercises on divisibility (2º ESO)
More exercises on divisibility (1º ESO)
More exercises on divisibility

A video about primes, factorization, divisibility...

Order of operations

Do you remember order of operations?
1º: Parentheses,
2º: Exponents,
3º: Multiplication & Division,
4º: Addition & Subtraction

Calculate:

a) 13 - 5 · 2 + 6 =
b) (13 - 5) · (2 + 6) =
c) 32 x 43 =
d) 9 x (5 + 3)2 - 144 =
e) (3 + 2 ·(16 - 3·4) - 7) · 5 =

Magic stars

A magic star is composed of straight line segments.
Every straight line segment has three points with three numbers.
The sum of the three numbers in each segment is equal to a same number.
So, in a five-pointed magic star you can see numbers from 0 to 14 and the the sum of three numbers in each segment always is 21.
Exercises on five-pointed magic star

In a seven-pointed magic star you can see numbers from 0 to 20 and the the sum of three numbers in each segment always is 30.
Exercises on seven-pointed magic star

These exercises are very good for increase your mental calculations.

viernes, 26 de octubre de 2007

Elections for Class representative

A class of 32 students elects their delegate or representative (class rep). The winner got 5/8 of the vote. If all students voted, how many students voted for the winner?

a) 16sometextb) 18sometextc) 20sometextd) 22 sometext Answer: 3 · 9 - 4 · 2 + 6 - 5

For more fractions problems, see the following pages (tutorials online with oral english explanations):

Prime factorization, GCF (Greatest Common Factor), LCM (Least Common Multiple), Decimals and fractions

Adding and substracting fractions.

Adding and substracting fractions and mixed numbers.

Fraction operations: multiplyimg fractions and mixed numbers.


Taken from ClassZone.com

All elementary Mathematics


http://www.bymath.com/

Lessons, study guide and some problems about Arithmetics, Algebra, Geometry...

domingo, 21 de octubre de 2007

Problems withs natural numbers (1)


1- There can be 39 students in the Computer class. The class has 14 boys and 17 girls. How many more students can join the class?

2- A pair of shoes cost $10 and a pair of sandals cost $8. What is the total cost of 3 pair of shoes and 4 pair of sandals?

The big race

Let’s suppose that Andrew and Charles run the 100 metres at a constant speed.
When Andrew crosses the finish line, Charles has run only 95 metres.
So Andrew wins the competition with a lead of 5 metres.
During a second competition, Andrew (who wants to make the competition more “balanced”) , penalizes himself voluntarily , starting 5 metres back the starting-line.
It is supposed that the two athletes run with the same speed they had during the first competition.
Who will win the second competition?

Men and T. Rex


If the Tyrannosaurus Rex weighed seven tons and the average man
weighs 164 pounds,
how many men would it take to equal the weight
of T-Rex?

Remember: 1 pound = 0.4545 kg

Simplifying fractions (I)

Solve exercises at the page
http://004c2ef.netsolhost.com/7Fraction.html
They are very easy.

At the end of the page you can see the answers.

Other page with exercises of fractions:
http://www.visualfractions.com/
It's very insteresting. You can add, substract, multiply, divide it, using a visual manner.

sábado, 20 de octubre de 2007

Number sets

There are various sets of numbers: natural numbers (N), integers (Z), rational (Q), real (R)...
In this page, you can see definitions and relations between them.
http://www.mathsisfun.com/sets/number-types.html

Do you know its symbols?
N: Natural: 1, 2, 3, 4, ...
Z: Integers: .... -3, -2, -1, 0, 1, 2, 3, ....

(Z is for the German "Zahlen", meaning numbers, because I is used for the set of imaginary numbers)
Q: Rational: -5/3, -6/3, 2/5, 7/3, 8/2....
(Q is for "quotient" because R is used for the set of real numbers)
R: Real: 1.5, -12.3, 99, √2, π, ...

There are other number sets: Imaginary (I) and Complex (C)

Nuestro instituto: IES Aguilar y eslava

El IES Aguilar y Eslava es un Instituto de Educación Secundaria en Cabra (Córdoba) con enseñanzas de ESO (Secundaria Obligatoria), Bachillerato en todas sus modalidades (Artes, Ciencias de la Naturaleza y la Salud, Humanidades y Ciencias Sociales), Educación Secundaria para Adultos y Ciclo Formativo de Formación Profesional (Atención Sociosanitaria).
Tiene una sección bilingüe en Inglés en los cursos 1º, 2º y 3º de ESO (curso 07/08).
Fue fundado en 1679 por D. Luis de Aguilar y Eslava y las clases comenzaron en 1692. Es el segundo instituto más antiguo de Andalucía.
Destaca nuestro instituto por los resultados que alcanzan nuestros alumnos en las pruebas de acceso a la Universidad, por encima de la media provincial y regional.

El comienzo del blog.

Este blog está dedicado a mis alumnos de la sección bilingüe del IES Aguilar y Eslava de Cabra (Córdoba), España.
Estudian Matemáticas de ESO (Educación Secundaria Obligatoria) en español con algunas actividades en Inglés.
A través de este blog estaremos en contacto y podremos compartir problemas, juegos, pasatiempos y todo lo que encontremos en el Universo de las matemáticas.
Mª Ángeles Piedra García